Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Food Res Int ; 184: 114262, 2024 May.
Article En | MEDLINE | ID: mdl-38609241

There are complex and diverse substances in traditional vinegars, some of which have been identified as biologically active factors, but the variety of functional compounds is currently restricted. In this study, it was aimed to determine the bioactive compounds in 10 typical functional vinegars. The findings shown that total flavonoids (0.21-7.19 mg rutin equivalent/mL), total phenolics (0.36-3.20 mg gallic acid equivalent/mL), and antioxidant activities (DPPH: 3.17-47.63 mmol trolox equivalent/L, ABTS: 6.85-178.29 mmol trolox equivalent/L) varied among different functional vinegars. In addition, the concentrations of the polysaccharides (1.17-44.87 mg glucose equivalent/mL) and total saponins (0.67-12.46 mg oleanic acid equivalent/mL) were determined, which might play key role for the function of tested vinegars. A total of 8 organic acids, 7 polyphenol compounds and 124 volatile compounds were measured and tentatively identified. The protocatechuic acid (4.81-485.72 mg/L), chlorogenic acid (2.69-7.52 mg/L), and epicatechin (1.18-97.42 mg/L) were important polyphenol compounds in the functional vinegars. Redundancy analysis indicated that tartaric acid, oxalic acid and chlorogenic acid were significantly positively correlated with antioxidant capacity. Various physiologically active ingredients including cyclo (Pro-Leu), cyclo (Phe-Pro), cyclo (Phe-Val), cyclo (Pro-Val), 1-monopalmitin and 1-eicosanol were firstly detected in functional vinegars. Principle component analysis revealed that volatiles profile of bergamot Monascus aromatic vinegar and Hengshun honey vinegar exhibited distinctive differences from other eight vinegar samples. Moreover, the partial least squares regression analysis demonstrated that 11 volatile compounds were positively correlated with the antioxidant activity of vinegars, which suggested these compounds might be important functional substances in tested vinegars. This study explored several new functionally active compounds in different functional vinegars, which could widen the knowledge of bioactive factor in vinegars and provide new ideas for further development of functional vinegar beverages.


Acetic Acid , Antioxidants , Chlorogenic Acid , Gallic Acid , Polyphenols
2.
Article En | MEDLINE | ID: mdl-37432818

Extracting invariant representations in unlabeled electrocardiogram (ECG) signals is a challenge for deep neural networks (DNNs). Contrastive learning is a promising method for unsupervised learning. However, it should improve its robustness to noise and learn the spatiotemporal and semantic representations of categories, just like cardiologists. This article proposes a patient-level adversarial spatiotemporal contrastive learning (ASTCL) framework, which includes ECG augmentations, an adversarial module, and a spatiotemporal contrastive module. Based on the ECG noise attributes, two distinct but effective ECG augmentations, ECG noise enhancement, and ECG noise denoising, are introduced. These methods are beneficial for ASTCL to enhance the robustness of the DNN to noise. This article proposes a self-supervised task to increase the antiperturbation ability. This task is represented as a game between the discriminator and encoder in the adversarial module, which pulls the extracted representations into the shared distribution between the positive pairs to discard the perturbation representations and learn the invariant representations. The spatiotemporal contrastive module combines spatiotemporal prediction and patient discrimination to learn the spatiotemporal and semantic representations of categories. To learn category representations effectively, this article only uses patient-level positive pairs and alternately uses the predictor and the stop-gradient to avoid model collapse. To verify the effectiveness of the proposed method, various groups of experiments are conducted on four ECG benchmark datasets and one clinical dataset compared with the state-of-the-art methods. Experimental results showed that the proposed method outperforms the state-of-the-art methods.

4.
Comput Biol Med ; 151(Pt B): 106339, 2022 12.
Article En | MEDLINE | ID: mdl-36459810

The fusion techniques of different modalities in medical images, e.g., Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI), are increasingly significant in many clinical applications by integrating the complementary information from different medical images. In this paper, we propose a novel fusion model based on a dense convolutional network with dual attention (CSpA-DN) for PET and MRI images. In our framework, an encoder composed of the densely connected neural network is constructed to extract features from source images, and a decoder network is employed to generate the fused image from these features. Simultaneously, a dual-attention module is introduced in the encoder and decoder to further integrate local features along with their global dependencies adaptively. In the dual-attention module, a spatial attention block is leveraged to extract features of each point from encoder network by a weighted sum of feature information at all positions. Meanwhile, the interdependent correlation of all image features is aggregated via a module of channel attention. In addition, we design a specific loss function including image loss, structural loss, gradient loss and perception loss to preserve more structural and detail information and sharpen the edges of targets. Our approach facilitates the fused images to not only preserve abundant functional information from PET images but also retain rich detail structures of MRI images. Experimental results on publicly available datasets illustrate the superiorities of CSpA-DN model compared with state-of-the-art methods according to both qualitative observation and objective assessment.


Magnetic Resonance Imaging , Positron-Emission Tomography , Neural Networks, Computer , Attention , Image Processing, Computer-Assisted
5.
Food Sci Nutr ; 10(8): 2620-2630, 2022 Aug.
Article En | MEDLINE | ID: mdl-35959255

Utilization of the biological macromolecule Dendrobium officinale polysaccharide (DOP) as a functional ingredient is limited by its high intrinsic viscosity and molecular weight. The goal of the present study was to improve rheological properties of DOP by ultrasonic treatment. Such a treatment resulted in the degradation of DOP and consequent reduction of rheological properties. Among DOP samples treated with ultrasonication at low (L), medium (M), and high (H) power intensities (25, 50, 75 w/cm2), M-DOP displayed the highest reactive oxygen species (ROS) and reactive nitrogen species (RNS) radical scavenging activity in vitro. In a mouse D-galactose (D-Gal)-induced aging model, M-DOP significantly increased activities of antioxidant enzymes and reduced levels of pro-inflammatory cytokines in liver. Real-time polymerase chain reaction (RT-PCR) analysis indicated that M-DOP upregulated messenger RNA (mRNA) expression of anti-inflammatory/antioxidant proteins such as Nrf2 (nuclear factor erythroid 2-related factor), hemeoxygenase-1 (HO-1), and NAD(P)H:quinone oxidoreductase (NQO1) in liver. In summary, M-DOP displayed a strong radical scavenging activity in vitro, and ameliorated liver injury in the mouse aging model through the promotion of Nrf2/HO-1/NQO1 signaling pathway.

6.
Article En | MEDLINE | ID: mdl-35886688

In recent decades, climate change is exacerbating meteorological disasters around the world, causing more serious urban flood disaster losses. Many solutions in related research have been proposed to enhance urban adaptation to climate change, including urban flooding simulations, risk reduction and urban flood-resistance capacity. In this paper we provide a thorough review of urban flood-resilience using scientometric and systematic analysis. Using Cite Space and VOS viewer, we conducted a scientometric analysis to quantitively analyze related papers from the Web of Science Core Collection from 1999 to 2021 with urban flood resilience as the keyword. We systematically summarize the relationship of urban flood resilience, including co-citation analysis of keywords, authors, research institutions, countries, and research trends. The scientometric results show that four stages can be distinguished to indicate the evolution of different keywords in urban flood management from 1999, and urban flood resilience has become a research hotspot with a significant increase globally since 2015. The research methods and progress of urban flood resilience in these four related fields are systematically analyzed, including climate change, urban planning, urban system adaptation and urban flood-simulation models. Climate change has been of high interest in urban flood-resilience research. Urban planning and the adaptation of urban systems differ in terms of human involvement and local policies, while more dynamic factors need to be jointly described. Models are mostly evaluated with indicators, and comprehensive resilience studies based on traditional models are needed for multi-level and higher performance models. Consequently, more studies about urban flood resilience based on local policies and dynamics within global urban areas combined with fine simulation are needed in the future, improving the concept of resilience as applied to urban flood-risk-management and assessment.


Disasters , Floods , City Planning , Climate Change , Humans , Risk Management
7.
J Healthc Eng ; 2021: 8642576, 2021.
Article En | MEDLINE | ID: mdl-34938424

Arrhythmia is a cardiovascular disease that seriously affects human health. The identification and diagnosis of arrhythmia is an effective means of preventing most heart diseases. In this paper, a BiLSTM-Treg algorithm that integrates rhythm information is proposed to realize the automatic classification of arrhythmia. Firstly, the discrete wavelet transform is used to denoise the ECG signal, based on which we performed heartbeat segmentation and preserved the timing relationship between heartbeats. Then, different heartbeat segment lengths and the BiLSTM network model are used to conduct multiple experiments to select the optimal heartbeat segment length. Finally, the tree regularization method is used to optimize the BiLSTM network model to improve classification accuracy. And the interpretability of the neural network model is analyzed by analyzing the simulated decision tree generated in the tree regularization method. This method divides the heartbeat into five categories (nonectopic (N), supraventricular ectopic (S), ventricular ectopic (V), fused heartbeats (F), and unknown heartbeats (Q)) and is validated on the MIT-BIH arrhythmia database. The results show that the overall classification accuracy of the algorithm is 99.32%. Compared with other methods of classifying heartbeat, the BiLSTM-Treg network model algorithm proposed in this paper not only improves the classification accuracy and obtains higher sensitivity and positive predictive value but also has higher interpretability.


T-Lymphocytes, Regulatory , Ventricular Premature Complexes , Algorithms , Electrocardiography , Heart Rate , Humans , Signal Processing, Computer-Assisted
8.
J Healthc Eng ; 2021: 4123471, 2021.
Article En | MEDLINE | ID: mdl-34676061

Myocardial infarction (MI) is one of the most common cardiovascular diseases threatening human life. In order to accurately distinguish myocardial infarction and have a good interpretability, the classification method that combines rule features and ventricular activity features is proposed in this paper. Specifically, according to the clinical diagnosis rule and the pathological changes of myocardial infarction on the electrocardiogram, the local information extracted from the Q wave, ST segment, and T wave is computed as the rule feature. All samples of the QT segment are extracted as ventricular activity features. Then, in order to reduce the computational complexity of the ventricular activity features, the effects of Discrete Wavelet Transform (DWT), Principal Component Analysis (PCA), and Locality Preserving Projections (LPP) on the extracted ventricular activity features are compared. Combining rule features and ventricular activity features, all the 12 leads features are fused as the ultimate feature vector. Finally, eXtreme Gradient Boosting (XGBoost) is used to identify myocardial infarction, and the overall accuracy rate of 99.86% is obtained on the Physikalisch-Technische Bundesanstalt (PTB) database. This method has a good medical diagnosis basis while improving the accuracy, which is very important for clinical decision-making.


Algorithms , Myocardial Infarction , Electrocardiography , Humans , Myocardial Infarction/diagnosis , Principal Component Analysis , Wavelet Analysis
9.
Comput Methods Programs Biomed ; 210: 106358, 2021 Oct.
Article En | MEDLINE | ID: mdl-34478912

BACKGROUND AND OBJECTIVE: Atrial fibrillation (AF) is the most prevalent arrhythmia, which increases the mortality of several complications. The use of wearable devices to detect atrial fibrillation is currently attracting a great deal of attention. Patients use wearable devices to continuously collect individual ECG signals and transmit them to the cloud for diagnosis. However, the ECG acquisition and transmission of wearable devices consumes a lot of energy. In order to solve this problem, some scholars have skipped the complex reconstruction process of compressed ECG signals and directly classified the compressed ECG signals, but the AF recognition rate is not high by this method. There is no explanation as to why the compressed ECG signals can be used for AF detection. METHODS: Firstly, a simple deterministic measurement matrix (SDMM) is used to perform random projection operation on the ECG signals to complete the compression. Then, we use the transpose of the SDMM to perform transpose projection operation on the compressed signals in the cloud to obtain the approximate signals. We verify the similarity between the approximate ECG signal and the original ECG signal to explain why the compressed ECG signals are effective in AF detection. Finally, the Transposed Projection - Convolutional Neural Network (TP-CNN) is used to effectively detect AF on the obtained approximate ECG signals. Our proposed method is validated in the MIT-BIH AFDB. RESULTS: The experimental results show that when compression ratios (CRs) are from 2 to 10, the average Pearson correlation coefficients between the approximate signals and the original signals are from 0.9867 to 0.8326, the average cosine similarities between the four frequency domain-based HRV features (including mean RR, RMSSD, SDNN and R density) are from 1.00 to 0.9958, from 1.00 to 0.9959, from 0.9978 to 0.8619 and from 0.9982 to 0.8707, respectively. Furthermore, when CR=10 (ECG was compressed to 1/10 of the original signal), the accuracy, specificity, f1 score and matthews correlation coefficient for AF detection of approximate signals were 99.32%, 99.43%, 99.14% and 98.57%, respectively. CONCLUSION: Our proposed method illustrates the approximate signals have significant characteristics of the original signals and they are valid to classify the approximate signals. Meanwhile, comparing with the state-of-the-art methods, TP-CNN exceeded the results of the method for compressed signals and were also competitive compared with the classification results of the original signals, and is a promising method for AF detection in wearable application scenarios.


Atrial Fibrillation , Data Compression , Wearable Electronic Devices , Algorithms , Atrial Fibrillation/diagnosis , Electrocardiography , Humans , Neural Networks, Computer
10.
J Healthc Eng ; 2021: 9913127, 2021.
Article En | MEDLINE | ID: mdl-34336169

Arrhythmia is a common cardiovascular disease that can threaten human life. In order to assist doctors in accurately diagnosing arrhythmia, an intelligent heartbeat classification system based on the selected optimal feature sets and AdaBoost + Random Forest model is developed. This system can acquire ECG signals through the Holter and transmit them to the cloud platform for preprocessing and feature extraction, and the features are input into AdaBoost + Random Forest for heartbeat classification. The analysis results are output in the form of reports. In this system, by comparing and analyzing the classification accuracy of different feature sets and classifiers, the optimal classification algorithm is obtained and applied to the system. The algorithm accuracy of the system is tested based on the MIT-BIH data set. The result shows that AdaBoost + Random Forest achieved 99.11% accuracy with optimal feature sets. The intelligent heartbeat classification system based on this algorithm has also achieved good results on clinical data.


Electrocardiography , Signal Processing, Computer-Assisted , Algorithms , Arrhythmias, Cardiac/diagnosis , Electrocardiography/methods , Heart Rate , Humans
11.
J Healthc Eng ; 2021: 6630643, 2021.
Article En | MEDLINE | ID: mdl-34055274

Automatic classification of ECG is very important for early prevention and auxiliary diagnosis of cardiovascular disease patients. In recent years, many studies based on ECG have achieved good results, most of which are based on single-label problems; one record corresponds to one label. However, in actual clinical applications, an ECG record may contain multiple diseases at the same time. Therefore, it is very important to study the multilabel ECG classification. In this paper, a multiscale residual deep neural network CSA-MResNet model based on the channel spatial attention mechanism is proposed. Firstly, the residual network is integrated into a multiscale manner to obtain the characteristics of ECG data at different scales and then increase the channel spatial attention mechanism to better focus on more important channels and more important ECG data fragments. Finally, the model is used to classify multilabel in large databases. The experimental results on the multilabel CCDD show that the CSA-MResNet model has an average F1 score of 88.2% when the multilabel classification of 9 ECGs is performed. Compared with the benchmark model, the F1 score of CSA-MResNet in the multilabel ECG classification increased by up to 1.7%. And, in the model verification on another database HF-challenge, the final average F1 score is 85.8%. Compared with the state-of-the-art methods, CSA-MResNet can help cardiologists perform early-stage rapid screening of ECG and has a certain generalization performance, providing a feasible analysis method for multilabel ECG classification.


Algorithms , Cardiovascular Diseases , Disease Progression , Electrocardiography , Humans , Neural Networks, Computer
12.
J Biomed Inform ; 119: 103819, 2021 07.
Article En | MEDLINE | ID: mdl-34029749

Atrial fibrillation (AF) is a common and extremely harmful arrhythmia disease. Automatic detection of AF based on ECG helps accurate and timely detection of the condition. However, the existing AF detection methods are mostly based on complex signal transformation or precise waveform localization. This is a big challenge for complex, variable, and susceptible ECG signals. Therefore, we propose a simple feature extraction method based on gradient set (GDS) for AF detection. The method first calculates the GDS of the ECG segment and then calculates the statistical distribution feature and the information quantity feature of the GDS as the input of the classifier. Experiments on four databases include 146 subjects show that the feature extraction method for detecting AF proposed in this paper has the characteristics of simple calculation, noise tolerance, and high adaptability to all kinds of classifiers, and got the best performance on the DNN classifier we designed. Therefore, it is a good choice for feature extraction in AF detection.


Atrial Fibrillation , Algorithms , Atrial Fibrillation/diagnosis , Databases, Factual , Electrocardiography , Humans , Signal Processing, Computer-Assisted
13.
J Healthc Eng ; 2021: 8811837, 2021.
Article En | MEDLINE | ID: mdl-33575022

Arrhythmia is one of the most common abnormal symptoms that can threaten human life. In order to distinguish arrhythmia more accurately, the classification strategy of the multifeature combination and Stacking-DWKNN algorithm is proposed in this paper. The method consists of four modules. In the preprocessing module, the signal is denoised and segmented. Then, multiple different features are extracted based on single heartbeat morphology, P length, QRS length, T length, PR interval, ST segment, QT interval, RR interval, R amplitude, and T amplitude. Subsequently, the features are combined and normalized, and the effect of different feature combinations on heartbeat classification is analyzed to select the optimal feature combination. Finally, the four types of normal and abnormal heartbeats were identified using the Stacking-DWKNN algorithm. This method is performed on the MIT-BIH arrhythmia database. The result shows a sensitivity of 89.42% and a positive predictive value of 94.90% of S-type beats and a sensitivity of 97.21% and a positive predictive value of 97.07% of V-type beats. The obtained average accuracy is 99.01%. Compared to other models with the same features, this method can improve accuracy and has a higher positive predictive value and sensitivity, which is important for clinical decision-making.


Electrocardiography , Signal Processing, Computer-Assisted , Algorithms , Arrhythmias, Cardiac/diagnosis , Electrocardiography/methods , Heart Rate , Humans
14.
Front Physiol ; 12: 727210, 2021.
Article En | MEDLINE | ID: mdl-34975516

Remote ECG diagnosis has been widely used in the clinical ECG workflow. Especially for patients with pacemaker, in the limited information of patient's medical history, doctors need to determine whether the patient is wearing a pacemaker and also diagnose other abnormalities. An automatic detection pacing ECG method can help cardiologists reduce the workload and the rates of misdiagnosis. In this paper, we propose a novel autoencoder framework that can detect the pacing ECG from the remote ECG. First, we design a memory module in the traditional autoencoder. The memory module is to record and query the typical features of the training pacing ECG type. The framework does not directly feed features of the encoder into the decoder but uses the features to retrieve the most relevant items in the memory module. In the training process, the memory items are updated to represent the latent features of the input pacing ECG. In the detection process, the reconstruction data of the decoder is obtained by the fusion features in the memory module. Therefore, the reconstructed data of the decoder tends to be close to the pacing ECG. Meanwhile, we introduce an objective function based on the idea of metric learning. In the context of pacing ECG detection, comparing the error of objective function of the input data and reconstructed data can be used as an indicator of detection. According to the objective function, if the input data does not belong to pacing ECG, the objective function may get a large error. Furthermore, we introduce a new database named the pacing ECG database including 800 patients with a total of 8,000 heartbeats. Experimental results demonstrate that our method achieves an average F1-score of 0.918. To further validate the generalization of the proposed method, we also experiment on a widely used MIT-BIH arrhythmia database.

15.
Food Chem ; 339: 128159, 2021 Mar 01.
Article En | MEDLINE | ID: mdl-33152898

During production in Chinese baijiu fermentation process, huge amounts of the by-product vinasse are generated and generally utilized as low-value animal feed. We applied alkaline extraction in combination with ultrasonication to recover vinasse proteins, which were then hydrolyzed by complex protease Corolase PP for 8 h to obtain peptide fractions (VPH-1, -2, -3) displaying high DPPH radical scavenging activity. VPH-3 (<3 kDa) separated by ultrafiltration had EC50 values lower than those of VPH-1 and -2 for reactive oxygen species (ROS) and reactive nitrogen species (RNS) radicals, and significantly inhibited production of NO and pro-inflammatory cytokines in LPS-stimulated RAW264.7 macrophage cells. Active peptides and their amino acid sequences were identified by LC-MS/MS analysis, and five synthesized peptides (particularly KLPDHPKLPK and VDVPVKVPYS) displayed strong anti-inflammatory activity at concentration 0.25 mg/mL. These findings will be useful in future commercial development of baijiu vinasse, including application as a new source of bioactive peptides.


Alcoholic Beverages , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Peptides/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antioxidants/chemistry , Chromatography, Liquid , Drug Evaluation, Preclinical , Hydrolysis , Mice , Peptides/analysis , Peptides/chemistry , Plant Proteins/analysis , Plant Proteins/pharmacology , Protein Hydrolysates/analysis , Protein Hydrolysates/chemistry , Protein Hydrolysates/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species , Tandem Mass Spectrometry
16.
Comput Intell Neurosci ; 2020: 1242781, 2020.
Article En | MEDLINE | ID: mdl-32831817

Ultrasonography is widely used in the clinical diagnosis of thyroid nodules. Ultrasound images of thyroid nodules have different appearances, interior features, and blurred borders that are difficult for a physician to diagnose into malignant or benign types merely through visual recognition. The development of artificial intelligence, especially deep learning, has led to great advances in the field of medical image diagnosis. However, there are some challenges to achieve precision and efficiency in the recognition of thyroid nodules. In this work, we propose a deep learning architecture, you only look once v3 dense multireceptive fields convolutional neural network (YOLOv3-DMRF), based on YOLOv3. It comprises a DMRF-CNN and multiscale detection layers. In DMRF-CNN, we integrate dilated convolution with different dilation rates to continue passing the edge and the texture features to deeper layers. Two different scale detection layers are deployed to recognize the different sizes of the thyroid nodules. We used two datasets to train and evaluate the YOLOv3-DMRF during the experiments. One dataset includes 699 original ultrasound images of thyroid nodules collected from a local health physical center. We obtained 10,485 images after data augmentation. Another dataset is an open-access dataset that includes ultrasound images of 111 malignant and 41 benign thyroid nodules. Average precision (AP) and mean average precision (mAP) are used as the metrics for quantitative and qualitative evaluations. We compared the proposed YOLOv3-DMRF with some state-of-the-art deep learning networks. The experimental results show that YOLOv3-DMRF outperforms others on mAP and detection time on both the datasets. Specifically, the values of mAP and detection time were 90.05 and 95.23% and 3.7 and 2.2 s, respectively, on the two test datasets. Experimental results demonstrate that the proposed YOLOv3-DMRF is efficient for detection and recognition of thyroid nodules for ultrasound images.


Deep Learning , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/diagnosis , Datasets as Topic , Female , Humans , Male , Ultrasonography
17.
J Healthc Eng ; 2020: 7526825, 2020.
Article En | MEDLINE | ID: mdl-32509259

Atrial fibrillation is the most common arrhythmia and is associated with high morbidity and mortality from stroke, heart failure, myocardial infarction, and cerebral thrombosis. Effective and rapid detection of atrial fibrillation is critical to reducing morbidity and mortality in patients. Screening atrial fibrillation quickly and efficiently remains a challenging task. In this paper, we propose SS-SWT and SI-CNN: an atrial fibrillation detection framework for the time-frequency ECG signal. First, specific-scale stationary wavelet transform (SS-SWT) is used to decompose a 5-s ECG signal into 8 scales. We select specific scales of coefficients as valid time-frequency features and abandon the other coefficients. The selected coefficients are fed to the scale-independent convolutional neural network (SI-CNN) as a two-dimensional (2D) matrix. In SI-CNN, a convolution kernel specifically for the time-frequency characteristics of ECG signals is designed. During the convolution process, the independence between each scale of coefficient is preserved, and the time domain and the frequency domain characteristics of the ECG signal are effectively extracted, and finally the atrial fibrillation signal is quickly and accurately identified. In this study, experiments are performed using the MIT-BIH AFDB data in 5-s data segments. We achieve 99.03% sensitivity, 99.35% specificity, and 99.23% overall accuracy. The SS-SWT and SI-CNN we propose simplify the feature extraction step, effectively extracts the features of ECG, and reduces the feature redundancy that may be caused by wavelet transform. The results shows that the method can effectively detect atrial fibrillation signals and has potential in clinical application.


Atrial Fibrillation/diagnosis , Diagnosis, Computer-Assisted , Electrocardiography/methods , Neural Networks, Computer , Wavelet Analysis , Algorithms , Humans
18.
Physiol Meas ; 41(7): 075005, 2020 08 21.
Article En | MEDLINE | ID: mdl-32464608

OBJECTIVE: Compressed sensing (CS) is a low-complexity compression technology that has recently been proposed. It can be applied to long-term electrocardiogram (ECG) monitoring using wearable devices. In this study, an automatic screening method for atrial fibrillation (AF) based on lossy compression of the electrocardiogram signal is proposed. APPROACH: The proposed method combines the CS with the convolutional neural network (CNN). The sparse binary sensing matrix is first used to project the raw ECG signal randomly, transforming the raw ECG data from high-dimensional space to low-dimensional space to complete compression, and then using CNN to classify the compressed ECG signal involving AF. Our proposed model is validated on the MIT-BIH atrial fibrillation database. MAIN RESULTS: The experimental results show that the model only needs about 1 s to complete the 24 h ECG recording of AF, which is 3.41%, 69.84% and 67.56% less than the time required by AlexNet, VGGNet and GoogLeNet, respectively. Under different compression ratios of 10% to 90%, the maximum and minimum F1 scores reach 96.25% and 88.17%, respectively. SIGNIFICANCE: The CS-CNN (compressed sensing convolutional neural network) model has high computational efficiency while ensuring prediction accuracy, and is a promising method for AF screening in wearable application scenarios.


Atrial Fibrillation , Data Compression , Electrocardiography , Algorithms , Atrial Fibrillation/diagnosis , Humans , Neural Networks, Computer , Wearable Electronic Devices
19.
J Sci Food Agric ; 100(8): 3544-3553, 2020 Jun.
Article En | MEDLINE | ID: mdl-32242927

BACKGROUND: Jiuqu are vital saccharifying and fermenting agents for Chinese fermented foods. Natural ventilation during Jiuqu fermentation causes changes in temperature, oxygen and moisture content, resulting in mass and heat gradients from the outer to inner areas of Jiuqu blocks. In the present study, microbiota stratification in Jiuqu was investigated by single molecule real-time sequencing and culture isolation. The contributors of Bacillus to amylase activity of Jiuqu and the dynamics of their biomass during Jiuqu fermentation were also analyzed. RESULTS: The dominant orders, genera and species between the inner and outer layers of Huangjiu qu (HJQ) were similar, although they displayed greater variance in two layers of Baijiu qu (BJQ). Bacillus possessed the highest diversity (including 27 species) in Jiuqu. Bacillus licheniformis, Bacillus altitudinis, Bacillus subtilis, Bacillus amyloliquefaciens and Bacillus megaterium were most prevalent in HJQ, whereas B. licheniformis, B. amyloliquefaciens and Bacillus cereus were dominant in BJQ. Isolates of B. amyloliquefaciens, B. subtilis and B. cereus exhibited high activities of amylase and glucoamylase. Quantification of Bacillus members possessing genes of α-amylase revealed that B. cereus and B. licheniformis were the most dominant microbes to secret α-amylase in Jiuqu and their biomass were increasing during Jiuqu fermentation. CONCLUSION: The present study demonstrates the microbial distribution in different layers of Jiuqu and clarifies the Bacillus species processing the activity of α-amylase. These results will help industries control the quality of Jiuqu by rationally selecting starters and optimizing their microbiota. © 2020 Society of Chemical Industry.


Bacillus/metabolism , Bacterial Proteins/metabolism , Microbiota , Oryza/microbiology , Amylases/genetics , Amylases/metabolism , Bacillus/classification , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/genetics , Fermentation , Fermented Foods/microbiology , Food Microbiology
20.
J Healthc Eng ; 2019: 6320651, 2019.
Article En | MEDLINE | ID: mdl-31737240

To reduce the high mortality rate from cardiovascular disease (CVD), the electrocardiogram (ECG) beat plays a significant role in computer-aided arrhythmia diagnosis systems. However, the complex variations and imbalance of ECG beats make this a challenging issue. Since ECG beat data exist in heavily imbalanced category, an effective long short-term memory (LSTM) recurrence network model with focal loss (FL) is proposed. For this purpose, the LSTM network can disentangle the timing features in complex ECG signals, while the FL is used to resolve the category imbalance by downweighting easily identified normal ECG examples. The advantages of the proposed network have been verified in the MIT-BIH arrhythmia database. Experimental results show that the LSTM network with FL achieved a reliable solution to the problem of imbalanced datasets in ECG beat classification and was not sensitive to quality of ECG signals. The proposed method can be deployed in telemedicine scenarios to assist cardiologists into more accurately and objectively diagnosing ECG signals.


Arrhythmias, Cardiac/diagnosis , Diagnosis, Computer-Assisted/methods , Electrocardiography/statistics & numerical data , Neural Networks, Computer , Arrhythmias, Cardiac/classification , Databases, Factual , Deep Learning , Humans , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio
...